Gaps Identified from OECD/NEA Benchmark on Probabilistic Fracture Mechanics for Piping Applications

Xinjian Duan, Deepak Somasundaram, Min Wang

Candu Energy Inc., Ontario, Canada

5th International Symposium on Probabilistic Methodologies for Nuclear Applications, 7-9, October 2024, Tokyo, Japan

Brief Description of PFM Benchmark

- Sponsored by OECD/NEA WGIAGE Metal Subgroup and led by CEI and USNRC
- Started in late 2020 and completed in early 2024
- Participants from 15 organizations in 12 countries
- 14 PFM codes were used
- Six Objectives
 - Understand differences in PFM software design
 - Understand the role of DFM modules
 - Reconcile deterministic LBB and PFM
 - Understand the effectiveness of ISI in reducing failure probabilities
 - ✓ Understand the effectiveness of leak detection in reducing failure probabilities
 - Explore PFM as input for PRA/PSA
- Final Report: NEA/CNSI/R(2024)5

Description of Benchmark Problems

- Butt-weld fabricated from Alloy 182 in a PWR coolant system that is susceptible to PWSCC
- Crack initiation not considered
- Growth from a postulated inside surface crack to through-wall crack until instability

- Outside diameter: 380 mm
- Wall thickness: 40 mm
- Initial crack length: 6 mm
- Initial crack depth: 1.5 mm
- Operating pressure: 15.5 MPa
- Primary membrane stress: 0.117 MPa
- Primary bending stress: 30.05 MPa
- Leak detection limit: 1 gpm
- Weld residual stress: see next slides

Analysis Matrix

Deterministic Analysis

Case	WRS		
DP-01	Linear		
DP-02	3 rd Polynomial		
DP-03	No WRS		

Probabilistic Analysis

Case	Growth Rate	WRS	Leak Detection	Inspection	
PP-01	Random	Deterministic	No	No	
PP-02	Random	Deterministic	Yes	No	
PP-03	Deterministic	Random	No	No	
PP-04	Deterministic	Random	Yes	No	
PP-045	Deterministic	Random	No	Yes	
PP-05	Deterministic	Random	Yes	Yes	
PP-06	Random	Random	Yes	Yes	
PP-07	Random	No WRS	No	No	

Reconcile LBB with PFM Results

- Codes predicting BBL behavior in the deterministic problem also predict higher rupture probabilities in the probabilistic problem
- Probabilistic approach has the advantages of modeling the time-dependent aspects of a problem with explicit representations of uncertainties
- CEI's PRAISE-CANDU Version 2.1.1 was used

PFM as Input for PSA

- Average frequency: p(t_a)/t_a
- Instantaneous frequency: [p(t_a)-p(t_b)]/[1-p(t_a)]/(t_a-t_b), effective in revealing the effects of various mitigations, such as ISI.
- Comparison between xLPR 2.1 and PRAISE-CANDU 2.1.1

Instantaneous Frequency

Average Frequency

Instantaneous Frequency

Summary of Differences

- There are large scatters in both deterministic and probabilistic results
- The scatter are attributed to different models used by each PFM code
 - ✓ K-solutions for surface and through-wall cracks
 - ✓ Transition from surface crack to through-wall crack
 - Implementation of WRS
 - ✓ Treatment of ISI: dependent vs independent
 - Treatment of ISI: in-loop vs postprocessing
 - ✓ Stability model
 - Treatment of crack face pressure
 - Crack opening displacement model
 - Thermalhydrualic model for leak calculation
 - Coding language
 - ✓ Computer platform
 - Sampling algorithms

Deterministic Modules

- Typical deterministic modules shown below
- Multiple models are available for module with green background

Surrogate Benchmark

- PRAISE-CANDU 3.0 Alpha was developed by CEI to implement different models
 - ✓ To eliminate the scatter caused by different Codes
 - ✓ Analysis matrix shown below
 - ✓ PAIT was reported in the PFM Benchmark report (PP-05) based on PRAISE-CANDU 2.1.1

Case ID	WRS Model		Surface K Solution		Inspection		Crack Transition	
	Polynomial	<u>J</u> AEA	<u>A</u> SME2021	<u>R</u> 6	Dependent	Independent	<u>T</u> ransition	<u>E</u> q. Angle
PAIT	\checkmark		\checkmark			\checkmark	\checkmark	
PAIE	\checkmark		\checkmark			\checkmark		\checkmark
PADT	\checkmark		\checkmark		\checkmark		\checkmark	
PRIT	\checkmark			\checkmark		\checkmark	\checkmark	
PRDE	\checkmark			\checkmark	\checkmark			\checkmark
JAIT		\checkmark	\checkmark			\checkmark	\checkmark	
JAIE		\checkmark	\checkmark			\checkmark		\checkmark
JADT		\checkmark	\checkmark		\checkmark		\checkmark	
JRIT		\checkmark		\checkmark		\checkmark	\checkmark	
JRDE		\checkmark		\checkmark	\checkmark			\checkmark

New Results based on Polynomial WRS

Two-order difference was observed with combination of different models

New Results based on JAEA WRS Model

- Akihiro Mano et al., A New Probabilistic
 Evaluation Model for
 Weld Residual Stress,
 International Journal of
 Pressure Vessels and
 Piping, 179 (2020)
 103945.
- Same trend as previous slide but with slightly large scatter

CEI vs. JAEA Results

- PAIT: PRAISE-CANDU 2.1.1 results as reported in NEA/CNSI/R(2024)5
- JAIT: PRAISE-CANDU 3.0 results with JAEA WRS Model
- JAIE: PRAISE-CANDU 3.0 results with JAEA WRS Model and Equivalent Angle
- JAEA: PASCAL-SP results as reported in NEA/CNSI/R(2024)5
- PRAISE-CANDU 3.0 results are close to PASCAL-SP results when the same WRS and crack transition models are used

Takeaway Questions

- How to deal with model uncertainties, especially combination of fracture toughness models from different nuclear standards?
- Are there any guidelines or best practice document for selecting and COMBINING models?
- Do we need to run multiple codes to cross-check the results in the regulatory submission? Or do we need to run one code with different combinations of models?
- How could deterministic calculations be used to make sense of PFM results?

Acknowledgement

Leading authors

- Xinjian DUAN, Candu Energy Inc, Canada
- Matthew HOMIACK, U.S. Nuclear Regulatory Commission, USA
- Christopher NELLIS, U.S. Nuclear Regulatory Commission, USA
- Robert TREGONING, U.S. Nuclear Regulatory Commission, USA
- Min WANG, Candu Energy Inc, Canada

• Contributors

- Robertas ALZBUTAS, Lithuanian Energy Institute; KTU, Lithuania
- Dilip DEDHIA, Structural Integrity Associates Inc., USA
- Peter DILLSTRÖM, Kiwa Technical Consulting AB, Sweden
- Yaroslav DUBYK, IPP Centre, Ukraine
- Klaus HECKMANN, GRS, Germany
- Yong-Beum KIM, Korea Institute of Nuclear Safety, Republic of Korea
- Robert KURTH, Engineering Mechanics Corporation of Columbus, USA
- Robert LAMMERT, MPA University of Stuttgart, Germany
- Yinsheng LI, Japan Atomic Energy Agency, Japan
- Akihiro MANO, Japan Atomic Energy Agency, Japan
- Gaojun MAO, Paul Scherrer Institut, Switzerland
- Masaki NAGAI, Central Research Institute of Electric Power Industry, Japan
- Ahti OINONEN, VTT Technical Research Centre of Finland, Finland
- Cedric SALLABERRY, Engineering Mechanics Corporation of Columbus, USA
- Do Jun SHIM, Electrical Power Research Institute, USA
- Lorenzo STEFANINI, Nuclear Research and Consultancy Group, the Netherlands

