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Brief Description of PFM Benchmark
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▪ Sponsored by OECD/NEA WGIAGE Metal Subgroup and led by CEI and USNRC

▪ Started in late 2020 and completed in early 2024

▪ Participants from 15 organizations in 12 countries

▪ 14 PFM codes were used

▪ Six Objectives

✓ Understand differences in PFM software design

✓ Understand the role of DFM modules

✓ Reconcile deterministic LBB and PFM

✓ Understand the effectiveness of ISI in reducing failure probabilities

✓ Understand the effectiveness of leak detection in reducing failure probabilities

✓ Explore PFM as input for PRA/PSA

▪ Final Report: NEA/CNSI/R(2024)5
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Description of Benchmark Problems

▪ Butt-weld fabricated from Alloy 182 in a 

PWR coolant system that is susceptible 

to PWSCC

▪ Crack initiation not considered

▪ Growth from a postulated inside 

surface crack to through-wall crack until 

instability
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▪ Outside diameter: 380 mm

▪ Wall thickness: 40 mm

▪ Initial crack length: 6 mm

▪ Initial crack depth: 1.5 mm

▪ Operating pressure: 15.5 MPa

▪ Primary membrane stress: 0.117 MPa

▪ Primary bending stress: 30.05 MPa

▪ Leak detection limit: 1 gpm

▪ Weld residual stress: see next slides
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Analysis Matrix
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Deterministic Analysis Probabilistic Analysis

Case Growth Rate WRS Leak Detection Inspection

PP-01 Random Deterministic No No

PP-02 Random Deterministic Yes No

PP-03 Deterministic Random No No

PP-04 Deterministic Random Yes No

PP-045 Deterministic Random No Yes

PP-05 Deterministic Random Yes Yes

PP-06 Random Random Yes Yes

PP-07 Random No WRS No No

Case WRS

DP-01 Linear

DP-02 3rd Polynomial

DP-03 No WRS
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Reconcile LBB with PFM Results
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DP-02 PP-03 (without LD) PP-04 (with LD)

▪ Codes predicting BBL behavior in the deterministic problem also predict higher rupture 
probabilities in the probabilistic problem

▪ Probabilistic approach has the advantages of modeling the time-dependent aspects of 
a problem with explicit representations of uncertainties

▪ CEI’s PRAISE-CANDU Version 2.1.1 was used
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PFM as Input for PSA
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▪ Average frequency: p(ta)/ta

▪ Instantaneous frequency: [p(ta)-p(tb)]/[1-p(ta)]/(ta-tb), effective in revealing the effects of 
various mitigations, such as ISI.

▪ Comparison between xLPR 2.1 and PRAISE-CANDU 2.1.1

Average Frequency Instantaneous Frequency Instantaneous Frequency
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Summary of Differences
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▪ There are large scatters in both deterministic and probabilistic results

▪ The scatter are attributed to different models used by each PFM code

✓ K-solutions for surface and through-wall cracks

✓ Transition from surface crack to through-wall crack

✓ Implementation of WRS

✓ Treatment of ISI: dependent vs independent

✓ Treatment of ISI: in-loop vs postprocessing

✓ Stability model

✓ Treatment of crack face pressure

✓ Crack opening displacement model

✓ Thermalhydrualic model for leak calculation

✓ Coding language

✓ Computer platform

✓ Sampling algorithms
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Natural 

Transition
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Deterministic Modules
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▪ Typical deterministic modules shown below

▪ Multiple models are available for module with green background
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Surrogate Benchmark

9

▪ PRAISE-CANDU 3.0 Alpha was developed by CEI to implement different models

✓ To eliminate the scatter caused by different Codes

✓ Analysis matrix shown below

✓ PAIT was reported in the PFM Benchmark report (PP-05) based on PRAISE-CANDU 2.1.1

Case ID
WRS Model Surface K Solution Inspection Crack Transition

Polynomial JAEA ASME2021 R6 Dependent Independent Transition Eq. Angle

PAIT    

PAIE    

PADT    

PRIT    

PRDE    

JAIT    

JAIE    

JADT    

JRIT    

JRDE    
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New Results based on Polynomial WRS
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▪ Two-order difference was observed with combination of different models
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New Results based on JAEA WRS Model
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▪ Akihiro Mano et al., A 

New Probabilistic 

Evaluation Model for 

Weld Residual Stress, 

International Journal of 

Pressure Vessels and 

Piping, 179 (2020) 

103945.  

▪ Same trend as previous 

slide but with slightly 

large scatter
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CEI vs. JAEA Results
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▪ PAIT: PRAISE-CANDU 2.1.1 

results as reported in 

NEA/CNSI/R(2024)5

▪ JAIT: PRAISE-CANDU 3.0 results 

with JAEA WRS Model

▪ JAIE: PRAISE-CANDU 3.0 results 

with JAEA WRS Model and 

Equivalent Angle

▪ JAEA: PASCAL-SP results as 

reported in NEA/CNSI/R(2024)5

▪ PRAISE-CANDU 3.0 results are 

close to PASCAL-SP results when 

the same WRS and crack 

transition models are used
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Takeaway Questions
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▪ How to deal with model uncertainties, especially combination of fracture 

toughness models from different nuclear standards?

▪ Are there any guidelines or best practice document for selecting and 

COMBINING models?

▪ Do we need to run multiple codes to cross-check the results in the regulatory 

submission? Or do we need to run one code with different combinations of 

models?

▪ How could deterministic calculations be used to make sense of PFM results?
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